图G的L(2,1)-标号是从顶点集V(G)到非负整数集的一个函数f,且使得当d(u,v)=1时,有|f(u)-f(v)|≥2;当d(u,v)=2时,有|f(u)-f(v)|≥1.不妨设最小标号为0.那么,图G的L(2,1)-标号数λ(G)是G的所有L(2,1)-标号下的跨度max{f(v);v∈V(G)}的最小值.定义了点接拟梯子,并完全确定了点接拟梯子的L(2,1)-标号数.
An L(2,1 ) -labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(u)-f(v)|≥2;当d(u,v)=2 if d(u,v) = 1, and If(u) -f(v) I〉1 if d(u,v) = 2. Without loss of generality, we let the least label be 0. The L(2,1 )-labeling number A(G) of G is the smallest number over the spans max{f(v) ;v E V(G) } of all L(2,1)-labelings of G. In this paper, we defme the point-join-similarity ladder, and completely determine its L ( 2, 1 )-labeling number.