位置:成果数据库 > 期刊 > 期刊详情页
基于话题要素相似度计算的报道关系识别方法
  • ISSN号:1000-386X
  • 期刊名称:《计算机应用与软件》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术] TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京大学计算机软件新技术国家重点实验室,江苏南京210093
  • 相关基金:国家863高科技重点项目(2006AA010109);国家自然科学基金(60673043).
中文摘要:

报道关系识别是话题识别与跟踪TDT(Topic Detection and Tracking)研究内容中的基本任务之一,根据新闻话题的几大要素:时间、地点、人物、内容等,提出了一种基于话题要素的话题报道表示模型,并给出了基于话题要素相似度计算的报道关系识别方法。实验证明这种方法特别适用于同主题下不同话题的报道关系识别。

英文摘要:

Story link detection(SLD) is one of the five basic tasks in topic detection and tracking(TDT).According to several major elements of news topic:when,where,who and what,this paper presents a topical story representation model based on topic elements,and then proposes an approach for story link detection based on topic elements similarity computation.This method is proved by the experiments reported in the paper to be particularly effective when dealing with SLD with different topics in same subject.

同期刊论文项目
期刊论文 23 会议论文 10 专利 1
同项目期刊论文
期刊信息
  • 《计算机应用与软件》
  • 北大核心期刊(2011版)
  • 主管单位:上海科学院
  • 主办单位:上海市计算技术研究所 上海计算机软件技术开发中心
  • 主编:朱三元
  • 地址:上海市愚园路546号
  • 邮编:200040
  • 邮箱:cas@sict.stc.sh.cn
  • 电话:021-62254715 62520070-505
  • 国际标准刊号:ISSN:1000-386X
  • 国内统一刊号:ISSN:31-1260/TP
  • 邮发代号:4-379
  • 获奖情况:
  • 全国计算机类中文核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:27463