位置:成果数据库 > 期刊 > 期刊详情页
基于动态神经网络法考虑区域沉降的高速铁路沉降预测
  • ISSN号:1001-8360
  • 期刊名称:《铁道学报》
  • 时间:0
  • 分类:TU443[建筑科学—岩土工程;建筑科学—土工工程]
  • 作者机构:[1]中南大学土木工程学院,湖南长沙410075
  • 相关基金:高速铁路基础研究联合基金(U1134207);国家自然科学基金(51078358)
中文摘要:

穿越地面沉降严重区域的高速铁路受工程沉降和区域沉降的耦合影响,准确预测高铁工后沉降的发展趋势对高铁安全运营有重要意义。通过分析影响工后沉降的因素,结合动态神经网络原理,以基准点、工作基点2个指标作为网络输入,以历史沉降数据作为延迟量反馈,用贝叶斯正则化算法训练网络,得到工后沉降的仿真非线性网络。应用此模型在沧州市沉降漏斗区进行沉降预测,以桥墩沉降量作为工后沉降的表征,和传统的双曲线法和灰色预测等模型对比。结果表明,动态神经网络考虑了区域沉降的影响,能更准确的预测工后沉降的发展趋势,具有很高的预测精度。

英文摘要:

As high-speed railway that went through areas with severe regional subsidence was subjected to, the coupling effects of the engineering and regional subsidence, accurate prediction of the development trend of post-construction subsidence of high speed railway has important significance to the safe operation of high-speed railway. Through analysis of the factors affecting the post-construction settlement and combination of dynamic neural network principle, based on Bayesian regularization algorithm, the simulated nonlinear network of the post-construction settlement was obtained, with the bench marks and working reference points as network input, and historical settlement data as delay feedbacks. The model was applied to the subsidence funnel area of Cangzhou city for settlement prediction. The post-construction settlement represented by pier subsidence was compared with the traditional forecast methods such as hyperbolic method and grey model. The results showed that dynamic neural network with consideration of regional subsidence can predict the developing trend of the post-construction settlement more accurately and has a high prediction accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《铁道学报》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国铁道学会
  • 主编:王德
  • 地址:北京复兴路10号中国铁道学会
  • 邮编:100844
  • 邮箱:tdxb@vip.163.com
  • 电话:010-51848021 51873116
  • 国际标准刊号:ISSN:1001-8360
  • 国内统一刊号:ISSN:11-2104/U
  • 邮发代号:2-308
  • 获奖情况:
  • 中国期刊方阵“双效”期刊,百种中国杰出学术期刊,中国科协第一、二届优秀学术期刊,入选学位与研究生教育中文重要期刊目录,中文核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17030