本文在有界区域Ω∪→R^N中讨论P-双调和方程△(a(x)|△u|^p-2△u)=f(x,u)的Dirichlet零边值问题,给出了在一般的临界增长条件下非平凡W0^(2,p)(Ω)解的存在性.
Consider the following p-biharmonic problem of O-Dirichlet boundary value in a bounded domain of R^N: △(a(x)|△u|^p-2△u)=f(x,u), where f(x, u) involving general critical growth. In this paper the existence of non-trivial W0^(2,p)(Ω) solutions is shown under some general assumptions.