承插式钢顶管可以实现大曲率顶进,但管节间的相对转动对接头和管身的影响机制却未得到系统研究。为研究大直径承插式钢顶管在顶进轴线调整过程中的受力变形特性,本文通过现场测试,详细记录了海底大直径钢顶管在顶进过程中承插式接头的测缝、径向变形和纵环向应力。结果表明,承插式接头可以适应大直径钢顶管的轴线偏转要求,管节间最大相对偏转角较规范允许的焊接式钢顶管最大偏转角增大了近19倍。在曲线顶进时,承插式钢顶管自身径向变形的调整可有效降低接头处的应力水平,且管节间由偏转产生的附加应力有限。
The large curvature jacking can be implemented by using steel pipe-jacking with socket and spigot joint. However the effect of the socket and spigot joint on the stress and the deformation of steel jacking pipe is rarely studied. The mechanical behaviors of large diameter steel pipe-jacking with the socket and spigot joint are investigated, and the jacking process is monitored. The joint deflection, radial deformation and longitudinal stress of large diameter steel pipe- jacking undersea are recorded in detail. The results indicate that the socket and spigot joint can meet the requirements of axis adjustment for large diameter steel pipe-jacking, and the deflection angle between two adjacent pipe sections is increased by nearly 19 times that of welded steel pipe-jacking. The stress can be effectively reduced due to the radial deflection of the socket and spigot joint and the additional stress is limited when curvature jacking.