位置:成果数据库 > 期刊 > 期刊详情页
The structure, tensile properties and water resistance of hydrolyzed feather keratin-based bioplastics
  • ISSN号:1004-9541
  • 期刊名称:《中国化学工程学报:英文版》
  • 时间:0
  • 分类:TQ324.9[化学工程—合成树脂塑料工业] TS529[轻工技术与工程—皮革化学与工程]
  • 作者机构:[1]School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China, [2]Green Chemical Engineering Institute, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China, [3]Guangzhou Vocational College of Science and Technology, Cuangzhou 510550, China
  • 相关基金:Supported by the National Natural Science Foundation of China (21176289, 31371880, 31401526), Higher School Science and Technology Innovation Project of Guangdong Province (2013KJCX0102), and Science and Technology Plan Project of Guangdong Province (20138010403029).
中文摘要:

Feather,as a by-product of the poultry industry,has long been treated as a solid waste,which causes environmental and economic problems.In this work,the hydrolyzed feather keratin(HFK)was extracted from the chicken feather using a cost-effective method of alkali-extraction and acid-precipitation by applying urea and sodium sulfide.The aim was development and characterization of the eco-friendly films based on the HFK with variable glycerol contents by a thermoplastic process.The thermal analysis showed that high temperature and high pressure improved the compatibility between the glycerol and the HFK molecules.Also it was shown that the addition of water is necessary in the hot-pressing process of films.The FT-IR analysis indicated that the formation of the new hydrogen bonds between HFK and glycerol.By increasing the glycerol content,the film tensile strength(σb)decreases from 10.5 MPa to 5.7 MPa and the solubility increases from 15.3% to 20.9%,while the elongation at break(εb)achieves the maximum value of 63.8% for the film with 35% glycerol.The swelling was just below 16.9%at 25 °C for 24 h,suggesting a good stability of the films in water.The water vapor permeability(WVP)varied between 3.02 × 10-10g · m-2· s-1· Pa-1and 4.11 × 10-10g · m-2· s-1· Pa-1for the films with 20% and40% glycerol,respectively.The HFK film was uniform,translucent and tough,which could be used in packaging and agricultural field.

英文摘要:

Feather, as a by-product of the poultry industry, has long been treated as a solid waste, which causes environ- mental and economic problems. In this work, the hydrolyzed feather keratin (HFK) was extracted from the chicken feather using a cost-effective method of alkali-extraction and acid-precipitation by applying urea and sodium sulfide. The aim was development and characterization of the eco-friendly films based on the HFK with variable glycerol contents by a thermoplastic process. The thermal analysis showed that high temperature and high pres- sure improved the compatibility between the glycerol and the HFI( molecules. Also it was shown that the addi- tion of water is necessary in the hot-pressing process of films, The FT-IR analysis indicated that the formation of the new hydrogen bonds between HFK and glycerol. By increasing the glycerol content, the film tensile strength (orb ) decreases from 10,5 MPa to 5.7 MPa and the solubility increases from 15.3% to 20.9%, while the elongation at break (εb) achieves the maximum value of 63,8% for the film with 35% glycerol. The swelling was just below 16.9% at 25 ℃ for 24 h, suggesting a good stability of the films in water. The water vapor permeability (WVP) varied between 3.02 x 10 ^10g. m 2. s-1 . pa-1 and 4.11 x 10-10g · m-2 · s-1 · Pa-1 for the films with 20%and 40% glycerol, respectively. The HFK film was uniform, translucent and tough, which could be used in packaging and agricultural field.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国化学工程学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国化学工业与化学工程学会
  • 主编:
  • 地址:北京东城区青年湖路13号
  • 邮编:100011
  • 邮箱:cjche@cip.com.cn
  • 电话:010-64519487/88
  • 国际标准刊号:ISSN:1004-9541
  • 国内统一刊号:ISSN:11-3270/TQ
  • 邮发代号:
  • 获奖情况:
  • 1998年化工系统优秀信息成果一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国高分子图书馆,日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:385