位置:成果数据库 > 期刊 > 期刊详情页
协方差重置的两阶段递推贝叶斯参数辨识算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]淮安信息职业技术学院电气工程系,江苏淮安223003, [2]江苏大学电气信息工程学院,江苏镇江212013
  • 相关基金:国家自然科学基金(No.51477070);江苏大学研究生科研创新项目(No.KYXX_0003).
作者: 景绍学[1,2]
中文摘要:

为了在有色噪声干扰情况下获得无偏估计,基于辅助模型思想和分解技术,提出了一种带协方差重置的两阶段递推贝叶斯辨识算法。该算法首先把待辨识模型分解成两个虚拟子模型,然后分别辨识;同时,把估计到的噪声方差引入算法,并加入了一种新的协方差重置方法。计算量分析表明,与带协方差重置的最小二乘算法相比,所提算法可以减少计算量。仿真结果显示,所提算法的估计误差比传统最小二乘算法要小。实例建模证明了算法的有效性。

英文摘要:

In order to obtain unbiased estimates in the presence of colored noise, a two-stage recursive Bayesian identification algorithm is proposed based on auxiliary model principle and decomposing technique. In this algorithm, the original model is decomposed into two fictional sub-models firstly, and then identified respectively; the estimated noise variance and a new covariance resetting method are also integrated into the algorithm to obtain improved estimates. Compared with recursive least squares algorithm, the proposed algorithm can reduce the computational burden. According to the simulation,the estimation error of the proposed algorithms is smaller than that of the recursive least squares. An industrial application validates the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887