使用电子回旋共振微波等离子体化学气相沉积方法(ECR-CVD),以Fe3O4纳米粒子为催化剂,多孔硅为基底,采用CH4/H2和CH4/B2H6/H2两种气源在连续的CVD过程中大量合成了一种新型的纳米管异质结构.扫描电镜(SEM)和透射电镜(TEM)观察表明:合成的异质结构一端是类竹节状的掺硼碳纳米管,另一端是光滑中空的纯碳纳米管.异质结构采用底端生长模式,先行生长的掺硼纳米管处于纳米管结构的顶端.
A new type of nanotube junction was synthesized with CH4/H2 and CH4/B2H6/H2 source gases in a continuous CVD process by electron cyclotron resonance chemical vapor deposition (ECR-CVD), Fe3O4 nanoparticle as the catalyst and porous silicon as the substrate. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to evaluate the morphology and structure. The result shows that the junction is joined with a bamboo-like borondoped CNT at one side and a straight tubular CNT at another side. The junction grows via bottom-end growth mechanism, boron-doped CNT growing in first period is on the top of the nanotube junction.