位置:成果数据库 > 期刊 > 期刊详情页
基于支持向量回归的图像复原方法研究
  • ISSN号:2095-3844
  • 期刊名称:《武汉理工大学学报:交通科学与工程版》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]四川大学电子信息学院图像信息研究所,成都610064, [2]海军工程大学电子工程学院,武汉430033
  • 相关基金:国家自然科学基金项目资助(批准号:60372079)
中文摘要:

针对退化图像复原问题,提出了一种基于支持向量回归的退化图像复原方法.该方法利用支持向量机回归算法非线性映射能力,通过训练样本对的学习训练,在退化图像与原始清晰图像之间建立映射关系,然后对测试样本进行复原.实际图像复原实验表明,得到的复原图像在视觉上和定量分析上都获得了比较好的效果.与神经网络方法相比,支持向量机回归算法克服了神经网络的模型选择与过学习问题、局部极小问题等.

英文摘要:

A new image restoration method is presented and investigated based on support vector regression (SVR). The mapping relationship between degenerated image and clear image is established by train- ing support vector machine. Experimental results show that satisfactory restoration effect is obtained both in visual impression and quantitative analysis. Compared with neural network, the SVR has prominent advantages in selecting model, overcoming over-fitting and local minimum, etc.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉理工大学学报:交通科学与工程版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉理工大学
  • 主编:骆奇峰
  • 地址:武汉市武昌区和平大道1178号89信箱
  • 邮编:430063
  • 邮箱:jwuttse@whut.edu.cn
  • 电话:027-86538436
  • 国际标准刊号:ISSN:2095-3844
  • 国内统一刊号:ISSN:42-1382/U
  • 邮发代号:38-148
  • 获奖情况:
  • 1997年全国优秀科技期刊,1995年全国自然科学优秀学报,1999年全国高校优秀学报及教育部优秀科技期刊,2010年中国高校优秀科技期刊,2010年中国科技论文在线优秀期刊二等奖,2008年RCCSE中国权威学术期刊,湖北省优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国剑桥科学文摘,中国中国科技核心期刊
  • 被引量:13741