在C^n上构造了一族全纯截曲率为正的凯拉度量,并证明所构造的度量具有如下性质:当测地距离ρ趋于无穷时,测地球的体积增长为O(k^2(β+1)n/β+2),而黎曼标量曲率的衰减为O(ρ^-2(β+1)/β+2),其中β≥0.
The paper constructs a class of complete Kahler metrics of positive holomorphic sectional curvature on C^n and find that the constructed metrics satisfy the following properties: As the geodesic distance ρ→∞, the volume of geodesic balls grows like O(k^2(β+1)n/β+2) and the Riemannian scalar curvature decays like O(ρ^-2(β+1)/β+2), whereβ〉 0.