位置:成果数据库 > 期刊 > 期刊详情页
基于改进的多层降噪自编码算法临床分类诊断研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP202[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]武汉大学计算机学院,武汉430072, [2]武汉大学人民医院,武汉430060
  • 相关基金:国家科技支撑计划资助项目(2012BAI01B05); 国家自然科学基金资助项目(61372107,61272276)
中文摘要:

针对临床分类诊断中普遍存在的样本不均衡、错分代价不同、大量无标签样本和测量误差等特点,引入了机器学习中较新的研究成果——多层降噪自编码(stacked denoising autoencoders,SDA)神经网络,并与欠采样局部更新的元代价(metacost)算法相结合,对SDA神经网络进行了改进,使组合模型具有代价敏感、降低不均衡性、有效利用无标签样本、抗噪声的特性。实验中将改进的SDA神经网络与SOFTMAX回归、反向传播(back propagation,BP)神经网络、支持向量机(support vector machine,SVM)、传统多层自编码(stacked autoencoders,SAE)神经网络,以及传统SDA神经网络等作了比较。实验结果表明,改进的SDA神经网络的准确率、ROC曲线下面积等均优于其他模型,提高了分类模型的辅助诊断性能。

英文摘要:

To aim at the common issues in clinical diagnose and classification,such as imbalance,different misclassification costs,numerous unlabeled samples,and measure errors,this paper introduced a relatively new research findings in deep learning,stacked denoising autoencoders( SDA) neural network. Then SDA neural network and metacost algorithm with under-sampling,it combined partial update to form an improved SDA neural network. This improved SDA neural network was cost-sensitive,denoising,able to utilize the unlabeled samples and alleviate the imbalance. In the experiment,it compared with SOFTMAX regression,back propagation( BP) neural network,support vector machine( SVM),stacked autoencoders( SAE) neural network,and traditional SDA neural network. It shows that the accuracy( ACC) and area under ROC( AUC) of the improved SDA neural network outperforms the others. Consequently,the auxiliary diagnostic ability of the classification model is enhanced.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049