设Γθ(t)为R^n(n≥2)中的齐次曲线,定义沿齐次曲线的强奇异积分算子Tn,α,βf(x)=p.v.∫-1^1f(x-Γθ(t))(e^-2πi|t|^(-β)/t|t|^α dt,α,β〉0.本文讨论了上述奇异积分算子在广义调幅空间上的有界性.
LetΓ_θ(t) be homogeneous curve onR~n(n≥2),and hypersingular integralsalong Homogeneous curves be defined by T_(n,α,β)f(x) = p.v.■_(-1)~- f(x-Γ_θ(t)) e~(-2πi|t|)~(-β)/(t|t|α)dt,α,β0.The purpose of this paper is to investigate the boundedness of these integraloperators on general modulation spaces.