金纳米微粒对可见光的强吸收特性使得光能可以高效地转换为热能.由于金纳米微粒的尺度在几十纳米范围,并且很容易与其他生物体结合,因此可以在局部范围进行激光选择性加热,这非常适合作为分子或细胞的靶向.采用这种金纳米微粒辅助激光热作用方法,对牛肠碱性磷酸酯酶(alkaline phosphatase aP)的选择性破坏,细胞膜的通透性提高以及对细胞的选择性灭活进行了试验并得到了很好的结果.此外,还讨论了用这种方法进行基因转染以及选择性光热治疗一些疾病的可能性.
The strong absorption of gold nanoparticles in the visible spectral range allows the localized generation of heat in a volume of only a few tens of nanometer. The efficient conversion of strongly absorbed light by plasmonic gold nanoparticles to heat energy and their easy bioconjugation suggest that the gold nanoparticles can be used as selective photothermal agents in molecular cell targeting. The selective destruction of alkaline phosphatase, the permeabilization of the cell membrane and the selective killing of cells by laser irradiating gold nanoparticles were demonstrated. The potential of using this selective technique in molecularly targeted photothermal therapy and transfection is discussed.