位置:成果数据库 > 期刊 > 期刊详情页
基于KFD指标聚类的高隐蔽性JPEG隐写分析
  • ISSN号:0254-4164
  • 期刊名称:计算机学报
  • 时间:2012
  • 页码:1951-1958
  • 分类:TP309[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院软件研究所,北京100190, [2]中国科学院信息工程研究所信息安全国家重点实验室,北京100195, [3]北京电子技术应用研究所,北京100191
  • 相关基金:本课题得到国家自然科学基金(61170281)、北京市自然科学基金(4112063)、中国科学院战略性先导专项课题(XDA06030601)及中国科学院信息工程研究所创新课题(YIZ0041101,Y1Z0051101)资助.
  • 相关项目:非马尔可夫模型下基于数据关联的隐写分析研究
中文摘要:

采用非公开的图像源或算法的隐写行为具有很强的隐蔽性.在这类对隐写者先验不足的场景下聚类分析更为实用.Ker等人比较不同指标不同配置之后,提出基于MMD指标聚类的隐写者识别方法.然而该方法所用MMD指标只考虑两个类样本中心之间的距离,忽略了样本相对中心点的聚合程度对可分性的影响,因而准确率存在提高的空间.为进一步提高现有隐写聚类分析方法的准确率,该文提出用核Fisher鉴别(KFI))指标计算样本间差异度量的聚类方法.首先,提取PEV274校准特征并归一化.然后,计算KFD指标组成距离矩阵.最后,根据样本间差异度量矩阵按重心法自底向上进行层次聚类分析.KFD指标兼顾与最大平均距离(MMD)原理相近的类间方差以及指示样本聚集程度的类内方差,更准确地估算样本间差异.实验结果表明,该文对低嵌入率隐写其准确率最高提高约30%,对高嵌入率准确率降低不超过5%.该文的创新点在于提出了一种更合理的指标和基于该指标聚类隐写分析的方法,比现有方法平均准确率有一定的提高.

英文摘要:

It is highly undetectable of steganographers who avoid utilizing public sources of ima- ges or steganographic schemes. In such scenario where steganalysers have little priori knowledge about steganographers, clustering is more practical. Ker proposed a MMD-based clustering scheme to distinguish steganographers from innocent actors after comparisons in various configu- rations and indexes. MMD merely considers the distance between centers of samples from two classes, but ignores the fact that aggregation how samples gather around their centers does affect the separability. Hence, its accuracy needs improvement. To increase the detecting rate further, we propose a clustering based steganalytic scheme using kernel Fisher discriminant indexes (KFDI) as the dissimilarities of samples. We firstly extract the calibration features PE;V274 and have them normalized. Then, we calculate the KFD indexes between samples to form the distance matrix. Finally, hierarchical clustering is proceeded with bottom-up iteration 'where we used thecenter of gravity as the center for the new gathered clusters. KFDI considers not only between- class variances that maximum mean discrepancy concentrates on, but also within-class variance that affects the aggregation between classes. Experimental results show that our scheme obtains a high increase in accuracy under low embedding rates, about 30% at most, but a little decrease of no more than 5 % under high embedding rates. The key contribution of this paper is to propose a more reasonable indicators and steganalytic method based on the KFDI, and we raised the average accuracy of existing methods.center of gravity as the center for the new gathered clusters. KFDI considers not only between- class variances that maximum mean discrepancy concentrates on, but also within-class variance that affects the aggregation between classes. Experimental results show that our scheme obtains a high increase in accuracy under low embedding rates, about 30% at most, but a little decrease of no more than

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国计算机学会 中国科学院计算技术研究所
  • 主编:孙凝晖
  • 地址:北京中关村科学院南路6号
  • 邮编:100190
  • 邮箱:cjc@ict.ac.cn
  • 电话:010-62620695
  • 国际标准刊号:ISSN:0254-4164
  • 国内统一刊号:ISSN:11-1826/TP
  • 邮发代号:2-833
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:48433