如果G-F不连通且每个连通分支至少含有两个顶点,则连通图G的边子集F称为限制边割.如果图G的每个最小限制边割都孤立G中的一条边,则称G是超限制边连通的(简称超λ′).对于满足|F|≤m的任意子集FE(G),超λ′图G的边容错性ρ′(G)是使得G-F仍是超λ′的最大整数m.这里给出了min{k1+k2-1,υ1k2-2k1-2k2+1,υ2k1-2k1-2k2+1}≤ρ′(G1×G2)≤k1+k2-1,其中,对每个i∈{1,2},Gi是阶为υi的ki正则ki边连通图且ki≥4,G1×G2是G1和G2的笛卡尔乘积.并给出了使得ρ′(G1×G2)=k1+k2-1的一些充分条件.
A subset F of edges in a connected graph G is a restricted edge-cut if G-F is disconnected and every component has at least two vertices.A graph Gis super restricted edgeconnected(super-λ′for short)if every minimum restricted edge-cut of Gisolates at least one edge.The edge fault-toleranceρ′(G)of a super-λ′graph Gis the maximum integer mfor which G-Fis still super-λ′for any subset F E(G)with|F|≤m.It was shown that min{k1+k2-1,υ1k2-2k1-2k2 +1,υ2k1-2k1-2k2 +1}≤ρ′(G1×G2)≤k1 +k2-1,where Giis a ki-regular ki-edge-connected graph of orderυi with ki≥4for each i∈ {1,2}and G1×G2is the Cartesian product graph of G1 and G2.And some sufficient conditions such thatρ′(G1×G2)=k1+k2-1were presented.