图上的一个pebbling移动,是从图的一个顶点同时移除2个pebbles,并且在其某个邻点上放置1个pebble.图的优化t-pebbling数,记为f′t(G),是指图G中所需要的pebbled的最小数目,使得存在该f′t(G)个pebbles在图上的一种分布,可以在经过一系列pebbling移动后,t个pebbles可以移动到任意一个给定的目标顶点上.f′(G)=f′1(G)称为图G的优化pebbling数.这里给出了路Pn和圈C5的优化t-pebbling数,证明了f′9t(P2×P3)=20t;f′9t+1(P2×P3)=20t+3;当2≤r≤8时,20t+2r+1≤f′9t+r(P2×P3)≤20t+2r+2,其中,当5≤r≤8时,最后一个不等式取到等号.
A pebbling move removes two pebbles from a vertex and places one pebble on one of its neighbours.For t≥1,the optimal t-pebbling number of a graph G,f′t(G),is the minimum number of pebbles necessary so that from some initial distribution of them it is possible to move t pebbles to any target vertex by a sequence of pebbling moves.f′(G)=f′1(G)be the optimal pebbling number of G.Here the optimal t-pebbling numbers of the path Pnand the cycle C5 were given,respectively.In the final section,it was obtained that f′9t(P2×P3)=20t,f′9t+1(P2×P3)=20t+3,and 20t+2r+1≤f′9t+r(P2×P3)≤20t+2r+2,for 2≤r≤8,the last equality holds for r=5,6,7,8.