多重网格法是一种求解由偏微分方程边值问题所导出的代数方程组的快速算法,几何多重网格法存在某些缺陷,影响它的推广应用。采用代数多重网格法求解岩石力学三维有限元离散线性方程组,简要介绍代数多重网格三维粗网格形成方法与三维插值算子,利用研制的基于代数多重网格法的三维有限元程序进行一系列数值试验。结果表明:代数多重网格法求解各种复杂计算条件下岩石力学三维有限元方程时具有良好的收敛特性和较强的适应能力,计算效率远高于直接法求解器,为大规模岩土工程三维有限元分析提供一种快速有效的方法。
Multigrid method solver is of high numerical efficiency when used in solving linear equations derived from boundary-value problems of partial differential equations. There are some shortages in geometrical multigrid method which restricts its application area. The algebraic multigrid method is used to solve finite element linear equations which are derived from three-dimensional finite element analysis of rock mechanics and engineering. The three-dimensional coarse-grid selection method based on element agglomeration and the three-dimensional interpolation operator are briefly introduced. By using the newly developed three-dimensional finite element program based on algebraic multigrid method, four different numerical experiments are designed, and carded out to validate its convergence character, numerical efficiency and practical application to modeling excavation problem of rock engineering. The numerical experiments show that the algebraic multigrid method is of better stability, good convergence character and better adaptability, with much higher numerical efficiency with increasing of the number of linear equations and much less computer memory compared with direct method. Increasing. The algebraic multigrid method has much better numerical efficiency. The algebraic multigrid method is suitable and efficient for three-dimensional finite element modelling of large-scale geomechanical engineering.