利用(α,β)混合序列Rosenthal型最大值不等式,得到一个关于行(α,β)混合阵列加权和最大值的完全收敛性定理,并利用该定理证明(α,β)混合序列加权和最大值的Marcinkiewicz-Zygmund型强大数定律,所得结果减弱了所需的矩条件.
We obtained a complete convergence theorem for maximum of weighted sums of rowwise(α,β)mixing arrays by using the Rosenthal type maximum inequality for(α,β)mixing sequence,and made use of this theorem to prove a Marcinkiewicz-Zygmund type strong law of large numbers for maximum of weighted sums of(α,β)mixing sequence.The obtained results weakened the required moment conditions.