位置:成果数据库 > 期刊 > 期刊详情页
基于多参数配准模型的脑核磁影像分割算法
  • ISSN号:0372-2112
  • 期刊名称:《电子学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海电力学院自动化工程学院,上海200090, [2]国网浙江省电力公司金华供电公司,浙江金华321000
  • 相关基金:国家自然科学基金(No.61203224); 上海市教育委员会创新项目(No.13YZ101)
中文摘要:

配准技术在基于多图谱的分割方法中能有效地将医学图谱的先验知识融入分割过程,再结合以高效的标记融合算法,最终实现精确地自动分割.针对图谱配准的较大误差及其对标记融合的重要影响,本文建立了一种新的概率图模型框架并以此提出了基于多参数配准模型的分割算法,将此方法与高效的标记融合算法相结合,可以提高目标图像中特定组织区域的分割精度,更使其在少量图谱分割的情形下具有重要应用.首先,使用多种配准参数对所有目标图像进行配准;然后,分别采用不同的算法对配准图像进行灰度融合和标记融合,实现训练图像的重构过程;最后,利用高效的标记融合算法对重构后的图像进行融合得到最终精确的分割结果.实验结果表明该方法均优于本文其他分割算法,能够有效提升脑部组织分割精度.

英文摘要:

Registration technology can effectively integrate the prior knowledge of medical atlases into the segmentation process,and then combine with the efficient label fusion algorithm to obtain the segmentation results accurately and automatically. Aimed at the large error in registration of target image and its great influence on label fusion,a framework of probabilistic graphical model is established and the idea of multi-parameter registration model is proposed. Combined with an efficient algorithm on label fusion,this framework can improve the segmentation accuracy of specific tissue regions on target image,which has important application value in segmentation with a fewavailable atlases. After the multi-parameter registration and the reconstruction process of training sets on target images,the final segmentation results are obtained by an efficient fusion algorithm. According to the experiment which was conducted on the brain magnetic resonance image segmentation with different segmentation methods,the proposed framework can effectively improve the accuracy of segmentation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:郝跃
  • 地址:北京165信箱
  • 邮编:100036
  • 邮箱:new@ejournal.org.cn
  • 电话:010-68279116 68285082
  • 国际标准刊号:ISSN:0372-2112
  • 国内统一刊号:ISSN:11-2087/TN
  • 邮发代号:2-891
  • 获奖情况:
  • 2000年获国家期刊奖,2000年获国家自然科学基金志项基金支持,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:57611