对高铁酸钾氧化降解水中微量三氯生(TCS)的反应动力学、反应机制及降解效果进行了实验研究.结果表明,高铁酸钾氧化降解TCS符合二级反应动力学模式,pH 8.5时表观二级反应动力学速率常数为531.9 L.(mol.s)-1,以10 mg.L-1的高铁酸钾计算,反应的半衰期是25.8 s.表观二级反应动力学速率常数随着pH值的增加逐渐降低,这种趋势可由高铁酸钾的各形态分布和TCS的酸碱解离常数来进行模拟.HFeO 4-与TCS的非解离态和解离态的反应速率常数分别为(4.1±3.5)×102L.(mol.s)-1和(1.8±0.1)×104 L.(mol.s)-1,且HFeO 4-与解离态TCS的反应占主导作用.线性自由能关系表明其反应机制为亲电氧化反应,反应的初始步骤是HFeO 4-亲电攻击TCS的酚羟基.当n[Fe(Ⅵ)]∶n(TCS)〉7∶1时,TCS完全去除,低浓度的腐殖酸有助于提高高铁酸钾氧化降解TCS的速率.因此,高铁氧化技术是一种极具应用前景的新型水处理技术.
Triclosan(TCS) is a broad-spectrum antibacterial agent widely used in many personal care products.We investigated oxidation of TCS by aqueous ferrate Fe(Ⅵ) to determine reaction kinetics,interpreted the reaction mechanism by a linear free-energy relationship,and evaluated the degradation efficiency.Second-order reaction kinetics was used to model Fe(Ⅵ) oxidation of TCS,with the apparent second-order rate constant(kapp) being 531.9 L·(mol·s)-1 at pH 8.5 and(24±1) oC.The half life(t1/2) is 25.8 s for an Fe(Ⅵ) concentration of 10 mg·L-1.The rate constants of the reaction decrease with increasing pH values.These pH-dependent variations in kapp could be distributed by considering species-specific reactions between Fe(Ⅵ) species and acid-base species of an ionizable TCS.Species-specific second-order reaction rate constants,k,were determined for reaction of HFeO-4 with each of TCS's acid-base species.The value of k determined for neutral TCS was(4.1±3.5)×102 L·(mol·s)-1,while that measured for anionic TCS was(1.8±0.1)×104 L·(mol·s)-1.The reaction between HFeO-4 and the dissociated TCS controls the overall reaction.A linear free-energy relationship illustrated the electrophilic oxidation mechanism.Fe(Ⅵ) reacts initially with TCS by electrophilic attack at the latter's phenol moiety.At a n∶n(TCS)〉7∶1,complete removal of TCS was achieved.And lower concentration of the humic acid could enhance the kapp of Fe(Ⅵ) with TCS.In conclusion,Fe(Ⅵ) oxidation technology appears to be a promising tool for applications of WWTPs effluents and other decontamination processes.