基于延拓结构和Hirota双线性方法研究了广义的变系数耦合非线性Schrdinger方程.首先导出了3组新的变系数可积耦合非线性Schrdinger方程及其线性谱问题(Lax对),然后利用Hirota双线性方法给出了它们的单、双向量孤子解.这些向量孤子解在光孤子通讯中有重要的应用.
A generalized variable-coefficient coupled nonlinear Schrodinger equation is studied by the prolongation structure and the Hirota's method.Three new integrable variable-coefficient coupled nonlinear Schrodinger equations and their linear spectral problems(Lax pairs) are derived.Then the one- and two-vector soliton solutions to these integrable equations are obtained by means of Hirota's method.These vector solutions may have important applications in the optical soliton communications.