压缩感知由于其在医学成像,无线通信等众多领域的重大应用价值,成为近些年研究的一个热点问题。压缩感知的优势在于能够用远比经典的Nyquist采样率低的采样数据,准确重构出真实的未知稀疏信号。信号重构算法的设计需要考虑两个方面一是较低的采样需求;第二是较快的重构速度。现有算法大都无法同时满足这两个方面。为了同时取得上述要求,针对快速递减信号,我提出了基于迭代支撑集检测的算法(简称ISD),取得了很好的效果,并发表于SIAM 会刊。利用快速递减特点,真实信号的支撑集检测采用了阀值的方法,检测到的部分支撑集信息帮助降低采样需要和提高信号的重构效果。在本项目中,我们将更加深入研究如何利用不同领域稀疏信号的特点和非零元素间的几何关系,显著提高支撑集的检测效果,进一步降低ISD算法的采样需求并提高重构速度;并将其从单一向量重构推广到多向量重构和低秩矩阵和张量重构;并对其做深入的理论分析和性能比较。
英文主题词sparse optimization;iterative support detection;compressive sensing;image processing;pattern recognition