针对纤维复合材料(FRP)在土木工程中应用存在的理论研究不足,材料利用效率低和价格高的瓶颈问题,通过研究FRP及混杂FRP拉索长期疲劳性能及其高寿命大跨结构,建立FRP拉索疲劳寿命预测模型,完善其在高寿命大跨结构中的分析方法,推动FRP经济高效应用。研究拟从微观-细观层次揭示FRP的疲劳损伤过程,阐明损伤机理,并结合宏观FRP拉索的疲劳试验,综合评价并建立多尺度FRP拉索疲劳寿命预测模型。在此基础上,通过对FRP拉索大跨结构的静动力、稳定性和振动性能分析,完善结构性能分析和拉索设计方法。本研究特色在于通过集成扫描电镜(SEM)-疲劳试验机,实现疲劳加载的同时进行微-细观层次的原位观测,能够全过程记录FRP的疲劳损伤出现、积累和发展过程,为阐明损伤机理,综合评价FRP拉索疲劳性能提供有力手段。此外,定量阐明纤维混杂效应和改性方法,对提升FRP拉索综合性能具有重要意义。
FRP;fatigue;creep;long-span brdige;structural behavior
项目通过对纤维增强复合材料(FRP)疲劳性能的多层次研究,并结合大跨桥梁中FRP拉索的力学性能分析和需求,提出FRP拉索在大跨桥梁中的设计方法和优化手段,以此实现大跨桥梁的高性能和长寿命。项目具体研究了FRP材料微细观疲劳损伤规律,宏观FRP筋疲劳强度和寿命预测,FRP筋蠕变性能以及在大跨斜拉桥中的FRP拉索优化设计方法和大跨悬索桥综合力学性能。研究结果表明FRP材料中基体微裂纹发展是控制FRP疲劳性能的关键因素,并可通过基体增韧等方法进一步提升。玄武岩纤维FRP(BFRP)材料的疲劳性能高,抗蠕变性能强,远远满足一般大跨桥梁对拉索的疲劳蠕变性能要求,是一种适用大跨桥梁的高性价比材料。不过,在应用中,BFRP拉索的锚固方法是控制疲劳性能的关键因素,合理解决锚固应力的缓慢过度是实现BFRP拉索应用的关键问题。多种FRP拉索在大跨斜拉桥中具有不同的优化设计参数,其由大跨斜拉桥非线性变形性能和拉索材料的疲劳蠕变性能共同决定。在大跨悬索桥中,多种FRP拉索表现出比传统钢拉索更加优越的静动力性能。