本项目的课题属于多复变函数论和算子理论,并涉及李群上的调和分析。我们将研究多变数全纯与调和Bergman 型空间的函数论和算子理论方面。我们将开展实单位球上调和Bergman 空间上Toeplitz算子和Hankel 算子以及Berezin 变换的研究。研究Korenblum 最大模原理(Korenblum's maximum principle)的高维推广。研究有界对称域上Bergman 空间中的取样与插值序列的Seip 型几何刻画。并研究对称锥及其上管状域上Besov 空间上Bergman 投影算子的L^p 有界性和Toeplitz 算子、Hankel 算子的有界性和紧性。
英文主题词Bergman-type spaces, Berezin transform, Korenblum's maximum principle, Sampling and interpolation