位置:立项数据库 > 立项详情页
基于稀疏非一致多核学习的低分辨率视频识别研究
  • 项目名称:基于稀疏非一致多核学习的低分辨率视频识别研究
  • 项目类别:青年科学基金项目
  • 批准号:61203248
  • 申请代码:F030402
  • 项目来源:国家自然科学基金
  • 研究期限:2013-01-01-2015-12-31
  • 项目负责人:任传贤
  • 依托单位:中山大学
  • 批准年度:2012
中文摘要:

以图像与视频为主要媒介的生物特征识别是模式识别与自动化应用领域的前沿研究方向,也是人类在基础理论与应用研究中面临的重要挑战之一。本项目以稀疏表示与多核学习方法为数学工具,以真实远距离监控视频和多类别数据为主要实验对象,认真探讨低分辨率数据的视觉不变特征生成原理,致力于研究具有群组效应的稀疏正则化方法、非一致核函数的局部保持匹配性能和大规模快速优化算法,提出实际有用的参数选择方法,在非一致多核学习、目标求解和在线快速算法方面具有较大创新性。项目详细讨论Lpq范数对噪音和例外点的鲁棒性、特征选择的稀疏性和目标函数的光滑性。重点解决惩罚项导致的目标函数优化问题、多模态数据的相似度量学习与特征融合问题和大规模数据面临的快速计算问题,提高系统的判别特征提取能力和泛化能力。通过本项目的研究,进一步加强稀疏多核学习框架的理论深度和应用广度,促进新方法向工业化与市场化方向转化。

结论摘要:

英文主题词Multi-scale analysis;Kernel method;Discriminant analysis;Sparsity regularization;Face recognition


成果综合统计
成果类型
数量
  • 期刊论文
  • 会议论文
  • 专利
  • 获奖
  • 著作
  • 8
  • 1
  • 0
  • 0
  • 0
相关项目
期刊论文 33 会议论文 73 专利 16
期刊论文 38 会议论文 15
期刊论文 19 会议论文 10 获奖 1
任传贤的项目