位置:立项数据库 > 立项详情页
Einstein 流形的收敛性
  • 项目名称:Einstein 流形的收敛性
  • 项目类别:青年科学基金项目
  • 批准号:10901111
  • 申请代码:A010301
  • 项目来源:国家自然科学基金
  • 研究期限:2010-01-01-2012-12-31
  • 项目负责人:张宇光
  • 负责人职称:副教授
  • 依托单位:首都师范大学
  • 批准年度:2009
中文摘要:

拟开展下述问题的研究1,研究带Ricci平坦Einstein度量的Calabi-Yau流形在代数几何意义下退化时的收敛性。特别是当Calabi-Yau流形退化到一Calabi-Yau代数簇时,相应度量的收敛性;2,研究带负Einstein常数的 Kaehler-Einstein度量的代数流形在代数几何意义下退化时的度量收敛性。

结论摘要:

在本项目中, 我研究了 Calabi-Yau 流形在代数几何意义下退化时相应的 Ricci 平坦 Kaehler-Einstein 度量的收敛性, 证明了一种弱意义下的 Candelas, de la Ossa 的猜想, 并将所得结果应用于 Calabi-Yau 3-流形的 moduli 空间的连通性。另外,我还研究了4维闭流形上 Ricci flow 的长期解与流形 的拓扑示性数之间的关系,证明了一个广义的Hitchin-Thorpe 不等式。已发表论文两篇 A) Continuity of Extremal Transitions and Flops for Calabi-Yau Manifolds, Journal of Differential Geometry 89 (2011) , 233-269。(合作者:Xiaochun Rong) B) A Note on Hitchin-Thorpe inequality and Ricci flow on 4-manifolds, PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, Volume 140, Number 5, May 2012, 1777–1783。 (合作者:张振雷)


成果综合统计
成果类型
数量
  • 期刊论文
  • 会议论文
  • 专利
  • 获奖
  • 著作
  • 3
  • 0
  • 0
  • 0
  • 0
相关项目
张宇光的项目