广义方程(GE)能够刻画变分不等式与互补系统、优化问题的一阶最优性条件、Nash均衡,在工程、经济等方面有着广泛的应用,是目前较为活跃的研究课题之一。由于很多实际问题会涉及随机因素,研究含有随机变量的GE(SGE)非常具有现实意义。另一方面,实际问题中随机变量的分布大多只能通过历史数据了解或估计,难免有偏差,而概率分布的变化势必会对SGE带来相应的影响。本项目拟分析SGE相对于随机变量的概率分布的稳定性。特别地,我们将研究欧式空间和Banach空间中SGE的解集相对于概率分布的度量正则性、H?lder连续性、Lipschitz连续性等。鉴于经验概率近似在随机优化中的广泛应用,我们将其作为特殊例子进行稳定性分析。此外,本项目还将利用SGE的稳定性理论分析随机均衡约束数学规划、随机Nash均衡等优化问题的稳定点以及最优解相对于概率分布的稳定性。
英文主题词stochastic generalized equations;stability analysis;stationary points;equilibrium problem;Robust MPEC