随着科技的发展,各种时滞微分系统模型不断涌现,形式也越来越复杂。微分方程理论与其它不同学科之间的交叉,以及与数学内部学科之间的交叉都显得越来越重要。代数在微分方程稳定性理论中的应用就是数学学科内部的一种交叉形式。本课题即将借助代数中的矩阵束理论来研究高维时滞微分系统的稳定性和分支现象。其中涉及到的代数方法除了矩阵束理论外,还会涉及到相关的谱理论、广义特征值理论、Kronecker积理论、线性算子理论等。本课题将利用这些方法,针对一些高维、复杂的时滞微分系统的平衡点、稳定性、Hopf分支等动力学特性进行研究,将系统对应的超越形式的特征方程转化为普通的代数方程,从而找到特征值的分布情形,并给出有关稳定性问题的一些代数判据。这样的研究方法创新性就在于利用代数学高度概括性的特点,可以讨论不同背景下具有相似结构的一些时滞微分系统的稳定性问题,其结论更具有一般性,应用更广泛。
英文主题词delay-differential systems;algebraic methods;matrix pencil;stability;bifurcations