动态多目标优化问题是指其目标函数和约束条件不仅与决策变量有关,而且与时间(环境)有关的一类优化问题,是不确定优化领域的难点和热点问题。现有算法的大部分并不能快速而准确的追踪到随时间动态变化的Pareto最优解,而且没有考虑到如何处理动态变化的约束条件。本项目以粒子群算法为搜索引擎,首先研究上一时刻(环境)所获得的Pareto最优解与下一时刻(环境)Pareto最优解之间的关系,建立预测模型,通过该模型近似下一时刻最优解的位置;为了处理随时间(环境)动态变化的约束条件,给出基于多样性设计的粒子个体极值和全局极值扰动的新方法。另外,噪声多目标优化问题是不确定优化领域的另一难点问题,现有大部分算法的计算量都非常巨大,为了克服此缺陷,本项目拟通过建立一个局部优化模型来过滤噪音,减少算法的计算量。最后将上述的动态多目标粒子群算法应用到网格安全任务调度问题中去,体现了动态多目标优化的应用价值。
英文主题词multi-objective particle swarm optimization;hyper-rectangle search;perturbation based on universal law;grid scheduling problem;