梯度共聚物的出现,使高分子科学面对的对象从结构沿分子链周期性的重复发展到统计结构沿着链的连续变化。这样的分子自身和由它所构筑的组装分子的形态,及其聚集态的结构和性质的研究将成为本学科中一个新的领域。近年,虽然在梯度共聚物的合成、结构和性质方面有越来越多的工作发表,但是至今"梯度"没有被定义,也没有任何方法测量或表征梯度结构。本项目中,我们拟研究梯度共聚物的序列统计结构,以实现梯度结构的表征。研究工作将在实验、理论和模拟三个方面同时进行。在理论上,从与化学反应参数相关联的微结构(或微序列)的链段分布函数出发,通过有限元法获得全分子序列的链段分布函数,以及NMR实验可测的累积各元组浓度。实验上,采用差谱技术获得微序列的各元组浓度,探讨它们与累积各元组浓度的关系。计算机模拟获得序列的所有统计量及其梯度。
本研究工作采用计算机模拟和数学推导,证明在稳态条件下,休眠/活化反应不影响活性共聚物的微结构和微序列。考虑到在实际的活性聚合反应中,各单体的瞬时浓度不再是一个固定的数值,增长反应的转移概率也随时间变化。从而设计了动态模型,真正实现了随时计算转移概率产生序列。结果表明,在动态条件下,休眠不影响组成及序列。同时,对3个实验体系进行原子转移自由基聚合,利用13C NMR分析聚合产物的序列结构。将结果与计算机模拟结果对比,证明了在非稳态的实际体系中休眠活化过程不影响序列结构。在此基础上,首次提出了目前唯一一种表征梯度分子结构的物理量- - 梯度指数(I)。将其应用于实验体系,证明了此物理量表征梯度聚合物的可行性。首次提出了一种简便区分分子间和分子内梯度的方法- - 薄层色谱分析。首次直接观察到了两亲梯度聚合物在选择性溶剂中的自组装形态结构。