本项目拟基于图像开花模型,研究弥散张量图像变形配准的理论方法和关键技术。当前国内外对弥散张量图像配准的研究存在两个问题传统的医学图像配准方法对本质上是四维的弥散张量图像配准效果不好;配准过程中对和神经纤维束走向相关的张量场方向信息处理方式不恰当。本项目中我们将基于图像开花模型,以解析的方式实现所提出的弥散张量图像变形配准方法,从精度和速度上确保配准的可靠性;同时,基于弥散张量成像的物理原理和数学模型,研究弥散张量图像后处理应遵循的约束条件及数学表示,并提出基于谱分解的弥散张量场特征向量系统插值方法;最后,对弥散张量场方向矫正技术、相似性度量和多分辨率迭代配准技术深入研究,基于所建立的变形配准模型和考虑方向信息的插值方法,完成弥散张量图像的精确快速变形配准。项目的顺利进行,将为弥散张量图像配准研究提供一种新的变形配准方法,进而为神经精神医学、认知科学等多个方向的研究提供理论和技术支持。
英文主题词diffusion tensor imaging;medical image registration;polynomial expansion;;