脉冲神经网络由于对生物神经系统的高度仿真性已经受到越来越多的关注,被称为第三代神经网络。本项目旨在研究新的脉冲神经网络结构和更好的学习算法。首先,针对我们最近提出的一种新的网络结构,研究如何将脉冲激发强度(即状态函数x(t)达到阈值时的导数)嵌入到脉冲网络的网络构造与运行机制中去,探索脉冲激发强度对突触后神经元信息处理能力的影响程度与影响方式,同时进一步探寻其它影响脉冲激发因素,使脉冲神经网络在不影响训练精度前提下减小网络规模,改善推广精度。其次,结合申请者主持的前一个国家自然科学基金的工作,研究脉冲神经网络的模糊化问题,提出几种基于s-t模的模糊脉冲神经网络结构,从而扩展脉冲神经网络的信息处理能力。另外,我们已经证明传统BP算法也完全适用于脉冲神经网络,希望以此为基础,对脉冲神经网络的BP算法及其它学习算法进行分析与比较,探讨适用于脉冲神经网络的更高效的学习算法。
英文主题词Spiking neural network;BP algorithm;Robustness;L_1/2 regularization;