随着1993年Camassa-Holm方程的出现,由于其所特有的尖孤子解(peakon)具有连续但却分段解析的性质,国际数学及物理学界对peakon的关注日益加强。而近年来DP方程、Novikov方程、Geng-Xue方程以及三分量CH方程等具有N-peakon的新可积动力系统的产生,使得研究怎样获得具有N-peakon的新可积模型立刻成为当今非线性科学的热点课题之一。另一方面,为了进一步揭示peakon的其它新的特性,国外一些数学家从1999年以来已经开始利用与立方弦问题相关的理论,以及借助于Stieltjes型连续分形,从N-peakon满足的动力系统出发构造其精确表示,并以此为基础,得到了关于peakon的一些有趣的结果。本项目的研究内容主要便是围绕上述两方面展开,期望在获得具有N-peakon的新可积模型的同时,能借助于N-peakon的精确表示,进一步揭示peakon的新特征。
peakon;integrable dynamic system;negative flow;asymptotic properties;
目前,用来描述浅水中的重力波且具有孤立子解的经典模型虽然很多,但既具有孤立子解,又是完全可积的,还能描述波的破碎现象的水波模型却很少。本项目的研究目的就是要构造更为丰富的具有N-peakon的可积模型,并通过求解动力系统来进一步揭示其特性。受本项目资助共发表学术论文6篇,全部发表于SCI杂志上。研究成果分类如下具有N-peakon的可积动力系统研究论文1篇,带负幂流的孤子方程解的研究论文2篇,动力系统及其孤立子解的研究论文3篇。本项目的代表性成果如下(1)构造出了超可积系统中具有N-peakon的Camassa-Holm方程,为丰富具有N-peakon的可积动力系统家族做出了重要贡献;(2)利用渐进展开法给出带负幂流的孤子方程的有限亏格解,为求解具有N-peakon的可积动力系统提供了新的思路。