能源需求的预测对我国社会经济的发展具有重要意义。现有的建模方法多需依赖较大规模的历史信息来确定模型参数,或对已有数据的统计特征做出某些预设,而这在实际的应用研究中常常得不到满足。本项目首先提出一种新的基于模糊系统理论的边缘线性化建模方法,从已知数据中提炼模糊推理规则,建立动态系统的非线性变参数模型;其次,分别就所得的连续型状态空间微分方程模型和离散型非线性时间序列模型,实现模型的结构辨识和参数估计,进而研究模型的逼近性能;第三,在建模数据充足或数据得以更新的情况下,利用神经网络进一步训练优化所建模型的结构和参数,从而提高模型的预测精度;最后,结合模糊聚类和因果检验,将该建模方法运用于我国能源需求预测的实证分析中。本课题的研究丰富了动态非线性系统的建模和分析预测途径,其在能源需求预测中的应用结果,有望为我国能源发展战略的调整转型提供一定的参考。
英文主题词dynamic system;fuzzy inference;neural network;energy demand;