欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
著作
> 著作详情页
Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuous local wave speeds
所属机构名称:清华大学
成果类型:著作
出版社:J. Computational Physics, to appear in 2006。
语言:英文
相关项目:计算数学与科学工程计算
作者:
S. Jin|X. Wen|
同著作项目
计算数学与科学工程计算
期刊论文 1
著作 15
同项目著作
An efficient method for computing hyperbolic systems with geometrical source terms having concentrations,
The $l1$-stability of a Hamiltonian- preserving scheme for the Liouville equation with discontinuous potentials,
Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with partial transmissions and reflections,
Computation of Transmissions and Reflections in Geometrical Optics via the Reduced Liouville Equation,
A Bloch decomposition based numerical method for quantum dynamics in periodic potentials,
Two interface type methods for computing hyperbolic systems with geometrical source terms having concentrations,
Numerical study of a domain decomposition method for a two-scale linear transport equation,
A time-splitting spectral method for the generalized Zakharov system in multi-dimensions
A time-splitting spectral scheme for the Maxwell-Dirac system
Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials,
The $l1$-stability of a Hamiltonian- preserving scheme for the Liouville equation with discontinuous potentials,
Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with partial transmissions and reflections,
Computation of Transmissions and Reflections in Geometrical Optics via the Reduced Liouville Equation,
A Bloch decomposition based numerical method for quantum dynamics in periodic potentials,