a,n≥1为整数,P为素数.本文证明了丢番图方程X^2(a^2+4p^2n)Y^4=-4p^2n以及X^2-(a^2+p^2n)y^4=-P^2N在一定条件下最多只有两组互素的正整数解(X,Y).
Let a, n ≥ 1 be integers, p a prime. We prove that, under some conditions the Diophantine equations X^2- (a^2 + 4p^2n) y^4 =-4p^2n and X^2- (a^2 +p^2n)y^4 =-p^2n have at most two coprime positive integer solutions (X, Y).