设P(x)∈^-Q[X],Q(x)∈Q[x],gcd(P(x),Q(x))=1,Q(x)只有有理的单根且位于区间[-1,0).我们讨论了收敛的无穷和T=∑n=0^∞ P(n)/Q(n)=0,证明了对任意整数m≥5,存在无穷多次数为m的多项式Q(x),使得T不是超越数.
We investigate the infinite convergent sum T =∑n=0^∞ P(n)/Q(n)= 0,where P(x)∈ ^-Q[x],Q(x) ∈ Q[x],gcd(P(x),Q(x)) = 1 and Q(x) has only simple rational zeros which are all in the interval[-1,0),and prove that for each integer m ≥5,there are infinite Q(x) with degree to such that T is not a transcendental number.