在这份报纸,我们构造一些周期的部门代数学(K/F,,) 。如果 F =和 K 是一块 cyclotomic 地的子字段,我们获得一个非标准元素的一个必要、足够的条件( p p 是一个素数和 ),> p u 是 p u th 原语根统一。作为为空间时间块代码的一个应用程序,我们也构造周期的部门代数学(K/F,,) F =(i) ,, K 是子字段(4p u ) 或,并且 = 1+i。而且,我们描述所有周期的部门代数学(K/F,,) 以便 F=(i) ,, K 是子字段和 =1+i d = 2 或 4,是 Euler totient 功能,和 100 是的 p 1, p 2 不同奇怪的素数。
In this paper, we construct some cyclic division algebras (K/F,σ,γ). We obtain a necessary and sufficient condition of a non-norm elementγ provided that F = Q and K is a subfield of a cyclotomic field Q(ζpu), where p is a prime and ζpu is a pu th primitive root of unity. As an application for space time block codes, we also construct cyclic division algebras (K/F,σ, γ), where F = Q(i), i = √-1, K is a subfield of Q(ζ4pu) or Q(ζ4pu1 pu2), and γ = 1+i. Moreover, we describe all cyclic division algebras (K/F, σ, γ) such that F = Q(i), K is a subfield of L = Q(ζ4pu1, pu2) and γ= 1 +i, where [K: F] = φ(pu1 pu2)/d, d = 2 or 4, φ is the Euler totient function, and p1,p2 ≤ 100 are distinct odd primes.