GF(q)是q个元的有限域,q是素数的方幂,n是正整数,GF(q^n)为GF(q)的n次扩张.用指数和估计的方法给出了3种情形下幂剩余正规元存在的充分条件,即(1)GF(q^n)中存在元ξ为GF(q)上的幂剩余正规元;(2)GF(q^n)中存在元ξ与ξ^(-1)同时为GF(q)上幂剩余正规元;(3)对GF(q^n)^*中任意给定的非零元a和b,GF(q^n)中存在元ξ与ξ^(-1)同时为GF(q)上d次幂剩余正规元,且满足Tr(ξ)=a,Tr(ξ^(-1))=b.
Let GF(q) denote a finite field with q elements,q be a prime power,n a positive integer,and GF(q^n) the n-th Galois extension of GF(q).By using exponential sums,some sufficient conditions are given for the existence of certain power residual normal elements in the following three cases:(1)ξ∈GF(q^n) is a power residual normal element in GF(q);(2) Bothξandξ^(-1)∈GF(q^n) are power residual normal elements in GF(q);(3) For arbitarily given two elements a,b in GF(q^n)^*,the existence of the elementξsuch that bothξandξ^(-1) are d-th power residual normal elements in GF(q) satisfying Tr(ξ) = a,Tr(ξ^(-1)) = b.