采用低温燃烧合成技术制备了La1-xSrxCu0.9Fc0.1O2.5-δ(x=0.1-0.4)粉体。利用X-射线衍射(XRD)和差热分析(DTA)技术对粉体的性能进行了表征。XRD结果表明,经800℃焙烧的La0.9Sr0.1Cu0.9Fe0.1O2.5-δ粉体的对称性较低,未形成钙钛矿结构,其余La1-xSrxCu0.9Fe0.1O2.5-δ(x=0.2-0.4)粉体为四方钙钛矿结构,晶体结构参数之间满足关系式a=b≈2√2c。DTA结果证明La1-xSrxCu0.9Fe0.1O2.5-δ在800℃以下是热力学稳定的,不会发生分解反应。采用直流四电极法测试了La1-xSrxCu0.9Fe0.1O2.5-δ试样在100-800℃之间的电导率。试样的电导率^ln(σT)与1/T之间呈很好的线性关系,说明La1-xSrxCu0.9Fe0.1O2.5-δ在测试温度范围内服从小极化子导电机制。Sr掺杂量对试样的电导率和电导活化能有着明显的影响,当Sr掺杂量为0.3时,La1-xSrxCu0.9Fe0.1O2.5-δ的电导率最高,电导活化能最小。
La1-xSrxCu0.9Fe0.1O2.5-δ powders were synthesized by a low temperature combustion method. Synthesized powders were characterized by X-ray diffraction analysis (XRD) and differential thermal analysis (DTA). The XRD results show that the perovskite structure is not formed for the La0.9Sr0.1Cu0.9Fe0.1O2.5-δ powder. The La1-xSrxCu0.9Fe0.1O2.5-δ ( x=0.2 -0.4 ) powders is in the tetragonal perovskite phase, obeying the relationship of a ? b ? 2√2c between the crystalline parameters. The DTA results indicate that the perovskite structure of La1-xSrxCu0.9Fe0.1O2.5-δ is thermodynamically stable below 800 ℃. The electrical conductivity of La1-xSrxCu0.9Fe0.1O2.5-δ was measured by the four-point method in the temperature range of 100-800℃. The linear plots of ^ln(σ T) vs 1/T indicate that the electrical conduction via a small polaron hopping mechanism in the testing temperature range. The electrical conductivity and activation energy of La1-xSrxCu0.9Fe0.1O2.5-δ are closely dependent on Sr addition. When the strontium content is 0.3, the highest electrical conductivity and the lowest activation energy are reached.