探讨了有限区域上一维对称的空间分数阶对流弥散方程的数值求解问题.基于Grunwald-Letnikov分数阶导数的定义,推导了一个有限差分格式,并讨论了分数微分阶数、弥散系数及平均流速对数值解的影响.
This paper deals with numerical solution for a one-dimensional symmetric fractional advection-dispersion equation(FADE in short) in a finite domain.A different scheme is presented based on the Grunwald-Letnikov definition of the fractional derivative,and impacts of the fractional order,diffusion coefficient and flow velocity on the numerical solution are discussed.