设C_m={C_3,C_4,…,C_m}.本文证明了r(C_(2m+1),K_n)≤(cn~(1+1/2))/(log n)对所有充分大的n成立,其中c=c(m)〉0是常数.
Let C_m={C_3,C_4,…,C_m}.It is shown that r(C_(2m+1),K_n)≤c(n1+1/m)/(log n) for large n,where c=c(m)0 is a constant.