位置:成果数据库 > 期刊 > 期刊详情页
认知无线电中的量子蛙跳频谱分配
  • ISSN号:0255-8297
  • 期刊名称:《应用科学学报》
  • 时间:0
  • 分类:O413[理学—理论物理;理学—物理] TN92[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]School of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
  • 相关基金:This work was supported by the National Natural Science Foundation of China (61102106), the China Postdoctoral Science Foundation (2013M530148), the Heilongjiang Postdoctoral Fund (LBH-Z13054) and the Fundamental Research Funds for the Central Universities (HEUCF 140809).
中文摘要:

Parameter adjustment that maximizes the energy efficiency of cognitive radio networks is studied in this paper where it can be investigated as a complex discrete optimization problem. Then a quantum-inspired bacterial foraging algorithm(QBFA)is proposed. Quantum computing has perfect characteristics so as to avoid local convergence and speed up the optimization of QBFA. A proof of convergence is also given for this algorithm.The superiority of QBFA is verified by simulations on three test functions. A novel parameter adjustment method based on QBFA is proposed for resource allocation of green cognitive radio. The proposed method can provide a globally optimal solution for parameter adjustment in green cognitive radio networks. Simulation results show the proposed method can reduce energy consumption effectively while satisfying different quality of service(Qo S)requirements.

英文摘要:

Parameter adjustment that maximizes the energy effi- ciency of cognitive radio networks is studied in this paper where it can be investigated as a complex discrete optimization prob- lem. Then a quantum-inspired bacterial foraging algorithm (QBFA) is proposed. Quantum computing has perfect characteristics so as to avoid local convergence and speed up the optimization of QBFA. A proof of convergence is also given for this algorithm. The superiority of QBFA is verified by simulations on three test functions. A novel parameter adjustment method based on QBFA is proposed for resource allocation of green cognitive radio. The proposed method can provide a globally optimal solution for pa- rameter adjustment in green cognitive radio networks. Simulation results show the proposed method can reduce energy consump- tion effectively while satisfying different quality of service (QoS) requirements.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用科学学报》
  • 中国科技核心期刊
  • 主管单位:上海市教育委员会
  • 主办单位:上海大学 中国科学院上海技术物理研究所
  • 主编:王延云
  • 地址:上海市上大路99号123信箱
  • 邮编:200444
  • 邮箱:yykxxb@departmenl.shu.edu.cn
  • 电话:021-66131736
  • 国际标准刊号:ISSN:0255-8297
  • 国内统一刊号:ISSN:31-1404/N
  • 邮发代号:4-821
  • 获奖情况:
  • 首届中国高校优秀科技期刊,第2届中国高校优秀科技期刊奖,全国高校优秀科技期刊,中国科技期刊方阵双效期刊,上海市优秀科技期刊,首届《CAJ-CD》执行优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:4747