位置:成果数据库 > 期刊 > 期刊详情页
基于局部Gabor自适应三值模式的人脸识别
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西北师范大学物理与电子工程学院,兰州730070
  • 相关基金:国家自然科学基金项目(No.61263036).
中文摘要:

提出一种融合Gabor特征和局部三值模式(LTP)的人脸识别方法,并在算法中对局部三值模式(LTP)进行改进,提出能够自适应阈值的LATP算子。对归一化后的人脸图像进行多尺度、多方向的Gabor滤波提取其对应的幅值特征,在每个幅值图像上进行LATP运算,抽取局部邻域关系模式,这些模式的区域直方图再经过信息熵加权并串联得到最终的人脸描述,识别过程使用χ2距离对特征直方图进行相似度匹配。在ORL和Yale人脸数据库上实验,结果表明提出的算法对人脸表情和光照变化具有更好的适应性,对噪声干扰具有更强的鲁棒性。

英文摘要:

In this paper, a new method for face description and recognition is proposed, which is based on feature fusion of Gabor and Local Ternary Pattern(LTP), and in this new algorithm, the paper alse improves the local ternary pattern and presents a new Local Adaptive Ternary Pattern with an adaptive threshold(LATP). First, the normalized face image is decomposed by multi-scale and multi-orientation Gabor filters to extract a series of Gabor magnitude maps. Then, Local Adaptive Ternary Pattern(LATP)is used to operate on each extracted Gabor magnitude map to extract the local neighbor pattern and the face image is described by the weighted histogram sequence of all extracted local neighbor patterns, and the weight is determined by information entropy. Finally, the histograms of train images and test images are matched by the chi-square distance. The experiment is conducted on the ORL and Yale face databases. The test results show that the new method has better adaptability under expression changes and illumination variations and has more strong robustness under noise jamming.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887