位置:成果数据库 > 期刊 > 期刊详情页
基于Kullback-Leibler分歧的变分滤波WSNs贝叶斯移动定位跟踪
  • ISSN号:1007-130X
  • 期刊名称:《计算机工程与科学》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:长安大学电子与控制工程学院,陕西西安710064
  • 相关基金:国家自然科学基金(61473047);中央高校基本科研业务费专项资金(2014G3322008)
中文摘要:

为了在降低资源能耗和带宽占用情况下,提高无线传感器网络WSNs移动目标定位跟踪的精度,提出了基于Kullback-Leibler分歧的变分滤波的WSNs贝叶斯移动目标定位跟踪算法。首先,利用高斯和Wishart分布在不考虑速度限制和方向移动限制情况下,构建WSNs移动定位的贝叶斯状态演化模型,并基于路径损耗模型构建移动目标定位的观测模型;其次,利用Kullback-Leibler分歧构建变分滤波的误差计算模型,通过周围激活节点实现移动节点目标的位置估计,设计了递归概率计算过程综合预测和更新两个过程,并实现了定位和目标跟踪的同步化;最后,通过仿真验证了所提模型在跟踪精度和资源节约上的优势。

英文摘要:

In order to achieve high tracking precision of moving target positioning in wireless sensor networks (WSNs) with low energy consumption and bandwidth consumption, we propose a WSNs Bayesian localization and tracking algorithm based on Kullback-Leibler divergence filtering. Firstly, we use the Gaussian and Wishart distribution without considering the speed limits and restrictions of movement direction to construct a mobile localization Bayesian state evolution model for WSNs, as well as a moving target positioning observation model based on the path loss model. Secondly, we use the Kullback Leibler to construct a divergence filtering error calculation model, which can estimate the position of the goal of the mobile node through activating the surrounding nodes. The recursive probability calculation process we designed integrates prediction and updates process, and realizes synchronous target localization and tracking. Simulation results show that the proposed model has advantages in tracking accuracy and resource saving.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与科学》
  • 中国科技核心期刊
  • 主管单位:国防科学技术大学
  • 主办单位:国防科学技术大大学计算机学院
  • 主编:王志英
  • 地址:湖南长沙德雅路109号
  • 邮编:410073
  • 邮箱:jsjgcykx@163.net
  • 电话:0731-84576405
  • 国际标准刊号:ISSN:1007-130X
  • 国内统一刊号:ISSN:43-1258/TP
  • 邮发代号:42-153
  • 获奖情况:
  • 湖南省优秀期刊,首届国防科技期刊优秀期刊,《CAJ-CD规范》执行优秀期刊
  • 国内外数据库收录:
  • 英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:16422