位置:成果数据库 > 期刊 > 期刊详情页
软件缺陷集成预测模型研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP311.5[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]陕西师范大学计算机科学学院,西安710062
  • 相关基金:国家自然科学基金面上项目(61173190); 陕西省自然科学基础研究计划项目(2009JM8002); 中央高校基本科研业务费专项资金资助项目(GK201302055)
中文摘要:

利用单一分类器构造的缺陷预测模型已经遇到了性能瓶颈,而集成分类器相比单一分类器往往具有显著的性能优势。以构造高效的集成缺陷预测模型为出发点,比较了七种不同类型集成分类器的算法和特点。在14个基准数据集上的实验显示,部分集成预测模型的性能优于基于朴素贝叶斯的单一预测模型。其中,基于投票的集成分类框架具有最优的预测性能以及统计学意义上的性能优势显著性,随机森林算法次之。Stacking集成框架也具有较强的泛化能力。

英文摘要:

Software defect prediction using classification algorithms was advocated by many researchers.However,several new literatures show the performance bottleneck by applying a single classifier recent years.On the other hand,classifiers ensemble can effectively improve classification performance than a single classifier.This paper conducted a comparative study of various ensemble methods with perspective of taxonomy.A series of benchmarking experiments on public-domain datasets MDP show that applying classifiers ensemble methods to predict defect could achieve better performance than using a single classifier.Specially,in all seven ensemble methods evolved by this experiments,voting and random forest have obvious performance superiority than others,and Stacking also has better generalization ability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049