将研究Ricci曲率以非负常数为下界的紧致黎曼流形上第一(闭的,Dirichlet,或Neumann)特征值下界,并给出第一特征值新的下界估计,以及Ling的估计[16]一个容易的证明.虽然仍使用Ling的某些方法,但是该文的证明避免了试验函数奇性的产生,并且在很大程度上简化了Ling的计算,这或许提供了估计特征值的一种新方式.
In this paper we study the lower bound for the first(closed,or Dirichlet,or Neumann) eigenvalue of the Laplace operator on compact Riemannian manifolds with its Ricci curvature bounded below by nonnegative constant,and give a new estimate of lower bound for the first(closed,or Neumann) eigenvalue and also an easy proof of Ling's an estimate[16].Although we use Ling's methods on the whole,to some extent we deal with the singularity of test functions and greatly simplify many of the calculations involved.Maybe we provide a new way for estimating eigenvalues.