我们在 n 为加权的 Hardy-Littlewood-Sobolev 不平等的 Euler-Lagrange 系统的积极解决方案获得最佳的 integrability:$$\left\{\begin { 聚在一起 } u (x)=\frac { 1 }{{\left |x \right|^\alpha }}\int_{\mathbb { R }^ n }{\frac {{ v (y)^ q }}{{\left |y \right|^\beta \left |{ x - y }\right|^\lambda }}} dy, \hfill \\ v (x)=\frac { 1 }{{\left |x \right|^\beta }}\int_{\mathbb { R }^ n }{\frac {{ u (y)^ p }}{{\left |y \right|^\alpha \left |{ x - y }\right|^\lambda }}} dy。\hfill \\\end { 聚在一起 }\right.$$ C。Jin 和 C. 李[计算。Var。部分微分方程, 2006, 26:447457 ] 为整齐上升开发了某很有趣的方法并且为 p 获得了最佳的 integrability, q > 1。基于一些新观察,这里,我们在那里克服困难,并且为 p 的盒子导出最佳的 integrability, q 1 并且 pq 1。这 integrability 在估计积极答案的 asymptotic 行为起一个关键作用什么时候 | x |0 并且什么时候 | x | .
We obtain the optimal integrability for positive solutions of the Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality in R^n :{u(x)=1/|x|^α|∫R^n v(y)^q|y|^β|x-y|^λdy,v(x)=1/|x|^β∫R^n u(y)^p|y|^α|x-y|^λdy.C. Jin and C. Li [Calc. Var. Partial Differential Equations, 2006, 26: 447-457] developed some very interesting method for regularity lifting and obtained the optimal integrability for p, q 〉 1. Here, based on some new observations, we overcome the difficulty there, and derive the optimal integrability for the case of p, q ≥1 and pq ≠1. This integrability plays a key role in estimating the asymptotic behavior of positive solutions when |x| →0 and when |x|→∞.