位置:成果数据库 > 期刊 > 期刊详情页
Optimal integrability of some system of integral equations
  • 期刊名称:Front. Math. China
  • 时间:2014
  • 页码:81-91
  • 分类:O316[理学—一般力学与力学基础;理学—力学] O175.5[理学—数学;理学—基础数学]
  • 作者机构:[1]Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University,Nanjing 210023, China, [2]Depar(ment of Mathematics, University of Colorado at Boulder, Boulder, CO 80309, USA
  • 相关基金:Acknowledgements The authors wish to express their appreciations to the anonymous referees. Their suggestions have greatly improved this paper. They are also grateful to Prof. Congming Li for many fruitful discussion. The first author was supported by the National Natural Science Foundation of China (Grant No. 11171158), the Natural Science Foundation of Jiangsu (No. BK2012846), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
  • 相关项目:地球流体力学和物理学中一些非线性偏微分方程研究
作者: 雷雨田|Ma Chao|
中文摘要:

我们在 n 为加权的 Hardy-Littlewood-Sobolev 不平等的 Euler-Lagrange 系统的积极解决方案获得最佳的 integrability:$$\left\{\begin { 聚在一起 } u (x)=\frac { 1 }{{\left |x \right|^\alpha }}\int_{\mathbb { R }^ n }{\frac {{ v (y)^ q }}{{\left |y \right|^\beta \left |{ x - y }\right|^\lambda }}} dy, \hfill \\ v (x)=\frac { 1 }{{\left |x \right|^\beta }}\int_{\mathbb { R }^ n }{\frac {{ u (y)^ p }}{{\left |y \right|^\alpha \left |{ x - y }\right|^\lambda }}} dy。\hfill \\\end { 聚在一起 }\right.$$ C。Jin 和 C. 李[计算。Var。部分微分方程, 2006, 26:447457 ] 为整齐上升开发了某很有趣的方法并且为 p 获得了最佳的 integrability, q > 1。基于一些新观察,这里,我们在那里克服困难,并且为 p 的盒子导出最佳的 integrability, q 1 并且 pq 1。这 integrability 在估计积极答案的 asymptotic 行为起一个关键作用什么时候 | x |0 并且什么时候 | x | .

英文摘要:

We obtain the optimal integrability for positive solutions of the Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality in R^n :{u(x)=1/|x|^α|∫R^n v(y)^q|y|^β|x-y|^λdy,v(x)=1/|x|^β∫R^n u(y)^p|y|^α|x-y|^λdy.C. Jin and C. Li [Calc. Var. Partial Differential Equations, 2006, 26: 447-457] developed some very interesting method for regularity lifting and obtained the optimal integrability for p, q 〉 1. Here, based on some new observations, we overcome the difficulty there, and derive the optimal integrability for the case of p, q ≥1 and pq ≠1. This integrability plays a key role in estimating the asymptotic behavior of positive solutions when |x| →0 and when |x|→∞.

同期刊论文项目
同项目期刊论文