位置:成果数据库 > 期刊 > 期刊详情页
基于惯常速率的多类目标轨迹预测
  • ISSN号:1671-4512
  • 期刊名称:《华中科技大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京大学深圳研究生院物联网智能感知技术实验室,广东深圳518055, [2]中山大学物理学院,广东广州510275, [3]中山大学数据科学与计算机学院,广东广州510006
  • 相关基金:国家自然科学基金资助项目(61340046,61673030,U1613209); 教育部博士学科点科研基金资助项目(20130001110011); 广东省自然科学基金资助项目(2015A030311034)
中文摘要:

为了解决监控视频中对大量不同类型的运动目标进行运动轨迹预测的问题,系统地提出了对多类目标的轨迹预测流程;在社交力模型的基础上,探讨了一种新的以惯常速率为聚类对象的运动模式特质分类方法,并应用这种方法在Stanford Drone数据库上取得了领先的结果.该方法可以使目标轨迹预测的研究对象拓展到除行人以外的其他任何移动目标,如汽车、自行车等运动物体,并对它们的运动轨迹进行有效预测.该方法在实现高精度预测的基础上,极大地缩短了目标分类所用的时间,分类效率的提高达5个数量级.

英文摘要:

To solve the problem of trajectory prediction for multi-class target,Firstly,a systematic procedure to predict the trajectory for multi-class target was proposed.Secondly,a brand-new target classification method based on social force model was introduced,which clustered the targets with preferred speed.The proposed algorithm obtained state-of-art results on Stanford Drone Dataset.The classification method could be applied to all kinds of moving targets in videos,including cars and cyclists,for trajectory prediction.The efficiency of target classification was improved by five orders of magnitudes.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华中科技大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:华中科技大学
  • 主编:丁烈云
  • 地址:武汉珞喻路1037号
  • 邮编:430074
  • 邮箱:hgxbs@mail.hust.edu.cn
  • 电话:027-87543916 87544294
  • 国际标准刊号:ISSN:1671-4512
  • 国内统一刊号:ISSN:42-1658/N
  • 邮发代号:38-9
  • 获奖情况:
  • 全国优秀科技期刊,首届国家期刊奖,第二届全国优秀科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21013