位置:成果数据库 > 期刊 > 期刊详情页
一种带稀有特征的空间co-location模式挖掘新方法
  • ISSN号:0469-5097
  • 期刊名称:南京大学学报(自然科学版)
  • 时间:2012.1.1
  • 页码:99-107
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]云南大学信息学院计算机科学与工程系,昆明650091
  • 相关基金:国家自然科学基金(61063008); 云南省教育厅研究基金(09Y0048); 云南大学科学研究基金(2009F29Q)
  • 相关项目:不确定数据的空间co-location模式挖掘技术研究
中文摘要:

Co-location模式挖掘是找出频繁出现在一起的一组空间特征的集合.在传统的方法中,一般假定每个空间特征在模式中具有平等的地位,然而,当模式中存在稀有特征时,有些模式便无法被获取.若使用现有针对含有稀有特征的挖掘方法,一些不频繁的模式也会被挖掘出来.针对以上问题,本文提出了最小加权参与率的概念,在此新概念下,不但可以挖掘出带稀有特征的频繁co-location模式,而且可以排除不频繁的模式.此外,针对算法时间复杂度高的问题,根据加权参与率排序后的部分向下闭合性提出了一种有效的剪枝方法,大大地提高了算法的执行效率.实验表明我们的方法对带稀有特征的co-location模式挖掘问题是有效的.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:南京大学
  • 主编:龚昌德
  • 地址:南京汉口路22号南京大学(自然科学版)编辑部
  • 邮编:210093
  • 邮箱:xbnse@netra.nju.edu.cn
  • 电话:025-83592704
  • 国际标准刊号:ISSN:0469-5097
  • 国内统一刊号:ISSN:32-1169/N
  • 邮发代号:28-25
  • 获奖情况:
  • 中国自然科学核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9316